LINQ is a codename for a project which is a set of extensions to the .NET Framework that encompasses language-integrated query, set and transform operations. It extends C# and VB with native language syntax for queries and provides class libraries to take advantage of these capabilities, available only in .NET Framework 3.5. For developers who write code that regularly access a recordset, this means a lot. The fact that queries are usually expressed in a specialized query language for different data sources makes it difficult for developers to learn a query language for each data source or data format that they must access. This is what LINQ is all about. It simplifies data access by providing a consistent model for working with data across various kinds of sources and formats. In LINQ, data is translated into objects, something that developers are more comfortable with working . Understanding LINQ will give us an idea of its capabilities and its benefits
Create a simple LINQ project
Let's start by creating a simple console project using the C# language in Visual Studio 2008. You can also download the free Visual C# 2008 Express Edition from the MSDN Download Center. Make sure you select .NET Framework 3.5 from the target framework drop-down menu.
This will open up your Program.cs file. Notice that by simply creating a project that targets the .NET Framework 3.5 automatically adds a using directive for the System.Linq namespace as this is already a part of the System.Core assembly. The System.Linq namespace provides classes and interfaces that support queries that use LINQ. We will start with this to understand the basics of LINQ.
Let's start writing some code inside the static void Main(string[] args):
//Obtaining the data source
string[] carNames = {"Ferrari", "Porsche", "Mercedes" , "McLaren", "Audi", "BMW"};
// Create the query
// query is an IEnumerable
var query = from name in carNames
where name.Contains("e")
select name;
// Execute the query
foreach (string name in query)
{ Console.WriteLine(name);
}
//Pause the application string[] carNames = {"Ferrari", "Porsche", "Mercedes" , "McLaren", "Audi", "BMW"};
// Create the query
// query is an IEnumerable
var query = from name in carNames
where name.Contains("e")
select name;
// Execute the query
foreach (string name in query)
{ Console.WriteLine(name);
}
Console.ReadLine();
We'll examine the basic components of a LINQ query. Any LINQ query consists of three distinct actions. These are obtaining the data source, creating the query and executing the query. The first thing that we need to do is to have a data source. In this case, it's an array of strings which supports the generic IEnumerable(T) interface. This makes it available for LINQ to query. A queryable type does not require special modification to serve as a LINQ data source as long as it is already loaded in memory. If not, you would have to load it into memory so LINQ can query the objects. This is applicable to data sources like XML files. Next, is the query. A query specifies information to retrieve from the data source. This is similar to a SQL query which includes syntaxes like SELECT, FROM, WHERE, GROUP BY, etc. Looking at the code above, you'll notice that its not like your typical SQL statement as the FROM clause appeared before the SELECT clause. There are a couple of reasons for this. One, it adheres to the programming concept of declaring the variable before using it. Also, from the point of view of Visual Studio, this makes it easy to provide the IntelliSense feature using the dot (.) notation as the variable has already been declared and that the framework has already inferred the correct type to the object. This provides the appropriate properties and methods, making it easy for the developers to write their code.
Another area to highlight in the code is the use of the keyword var, which is a new keyword introduced in C# 3.0. What this does is it looks at the value assigned to the variable, then determines and sets the appropriate one. This concept is called type inference. From the code above, the query variable, query, appears to be an array of string. So the compiler will automatically assume that it is a variable of type IEnumerable. This is helpful if you do not know the variable type during runtime. But this does not mean that any type can be assigned to the variable after the initial assignment - something like a dynamic type - since .NET is a strongly typed language platform. This simply means that an object can take on a different type and the compiler can simply handle that. Assigning a different type to an already existing one violates the concept of polymorphism in object-oriented programming. Let's say you assign the value 12 to the query variable, query. This will throw a type conversion exception as the original type of the variable is a string collection.
Your output will look like this when you run your project in Visual Studio. You can press F5 or click on Debug - Start Debugging in Visual Studio
I think u got a small idea abt LINQ. in the coming day's i can give u more direction on linq with in my knoweldge abt it... Stay Tune....
Have a nice day... 'N happy Coding :)
No comments:
Post a Comment